skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Dong, Chao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Aluminum-doped porous silicon was produced by a molten salt reaction. 
    more » « less
    Free, publicly-accessible full text available December 9, 2025
  2. Frequency-modulated (FM) combs based on active cavities like quantum cascade lasers have recently emerged as promising light sources in many spectral regions. Unlike passive modelocking, which generates amplitude modulation using the field’s amplitude, FM comb formation relies on the generation of phase modulation from the field’s phase. They can therefore be regarded as a phase-domain version of passive modelocking. However, while the ultimate scaling laws of passive modelocking have long been known—Haus showed in 1975 that pulses modelocked by a fast saturable absorber have a bandwidth proportional to effective gain bandwidth—the limits of FM combs have been much less clear. Here, we show that FM combs based on fast gain media are governed by the same fundamental limits, producing combs whose bandwidths are linear in the effective gain bandwidth. Not only do we show theoretically that the diffusive effect of gain curvature limits comb bandwidth, but we also show experimentally how this limit can be increased. By adding carefully designed resonant-loss structures that are evanescently coupled to the cavity of a terahertz laser, we reduce the curvature and increase the effective gain bandwidth of the laser, demonstrating bandwidth enhancement. Our results can better enable the creation of active chip-scale combs and be applied to a wide array of cavity geometries. 
    more » « less
  3. AbstractThis article presents an overview of the current status and future prospects of integrated nonlinear photonics in the long-wave infrared (LWIR) spectrum, spanning 6 to 14 μm. This range is well-suited for applications such as chemical identification, environmental monitoring, surveillance, search and rescue, and night vision. Nevertheless, the advancement of a mature, low-loss chip-level platform for the LWIR remains in its infancy. We examine the materials growth techniques, and fabrication methods associated with integrated nonlinear photonics in the LWIR, highlighting promising platforms like chalcogenide glass, single-crystalline diamond, Ge/SiGe, and III–V compounds. Furthermore, we explore loss mechanisms, dispersion engineering, nonlinear generation of broadband supercontinuum and frequency combs, and device performance, encompassing photodetectors and modulators. Lastly, we propose a roadmap for the future development of integrated nonlinear photonics in the LWIR. Graphic Abstract 
    more » « less
  4. Abstract The longwave infrared (LWIR) range, which spans from 6 µm to 14 µm, is appealing for sensing due to strong molecular fingerprints in this range. However, the limited availability of low-loss materials that can provide higher-index waveguiding and lower-index cladding in the LWIR range presents challenges for integrated photonics. In this work, we introduce a low-loss germanium-on-zinc selenide (GOZ) platform that could serve as a versatile platform for nanophotonics in the LWIR. By bonding high-quality thin-film germanium (Ge) to a zinc selenide (ZnSe) substrate, we demonstrate transparency from 2 µm to 14 µm and optical losses of just 1 cm−1at 7.8 µm. Our results demonstrate that hybrid photonic platforms could be invaluable for overcoming the losses of epitaxially grown materials and could enable a wide range of future quantum and nonlinear photonics. 
    more » « less
  5. Abstract The longwave infrared (LWIR) region of the spectrum spans 8 to 14 μm and enables high-performance sensing and imaging for detection, ranging, and monitoring. Chip-scale LWIR photonics has enormous potential for real-time environmental monitoring, explosive detection, and biomedicine. However, realizing technologies such as precision sensors and broadband frequency combs requires ultra low-loss and low-dispersion components, which have so far remained elusive in this regime. Here, we use native germanium to demonstrate the first high-quality microresonators in the LWIR. These microresonators are coupled to partially-suspended Ge waveguides on a separate glass chip, allowing for the first unambiguous measurements of isolated linewidths. At 8 μm, we measured losses of 0.5 dB/cm and intrinsic quality (Q) factors of 2.5 × 105, nearly two orders of magnitude higher than prior LWIR resonators. Our work portends the development of novel sensing and nonlinear photonics in the LWIR regime. 
    more » « less